

- Supplied by three upstate watersheds covering1950 sq. miles
- ◆ 19 reservoirs
- Storage capacity of 600 billion gallons
- Serves 9 million people an average of 1.4 billion gallons/day
- ◆ 90% from Catskill Delaware system
- ◆ 95% delivered by gravity
- Currently only water coming from Croton must be filtered

Croton

- Source water indicates stress
- Elevated disinfection byproducts
- Not used periodically
- High density and high growth
- Close to City
- ♦ Inflexible system
- Must be filtered

Catskill/Delaware

- ◆ Excellent source water
- Low levels of disinfection byproducts
- Low density and low growth
- ◆ 75-125 mi from City
- ◆ Flexible system
- Currently no filtration required

EPA's Role in City's Water Protection Program

- Mandate is through Safe Drinking Water Act and specifically Safe Water Treatment Rule
- Requires that all drinking water taken from surface water be filtered to remove microbial contaminants
- A filtration waiver can be granted if a strict series of water quality, operational, and watershed control criteria can be met.
- Filtration Avoidance is the exception to the rule

Surface Water Treatment Rule

- Source Water QualityCriteria
 - ◆ Coliforms
 - ◆ Turbidity

- Site-Specific Criteria
 - ◆ Disinfection
 - ◆ Absence of waterborne disease outbreaks
 - ◆ Total coliform MCLs
 - ◆ Total trihalomethane MCLs
 - ♦ Watershed Control

1997 Filtration Avoidance Determination – Program Elements

- Objective criteria compliance
- Land Acquisition
- Agricultural Program
- Infrastructure
 - Septic systems
 - Wastewater Treatment Plant Upgrade program
 - Stormwater controls
- Waterfowl management
- Forestry Program

- Wetlands protection
- Kensico program
- Monitoring/Modeling/GIS
- Watershed Rules & Regs
- WWTP inspection program
- Disease surveillance
- Cross connection controls
- Education and Outreach
- Stream management

Land Acquisition Program

- In 1997, City owned only 7% of watershed land
- Land ownership is the best means of protecting water quality
- Requirements:
 - ◆ Solicit 355,050 acres vacant land from willing seller
 - Prioritized by proximity to reservoirs and distribution system
 - ◆ \$300 million commitment over 15 years

Land Acquisition Program

Agricultural Program

- 350 dairy farms in watershed (gross > \$10,000)
- Potential source of pathogens and nutrients to source water
- Voluntary locally-led program with 100% funding by NYC
- Objective improve water quality through multi-barrier approach:
 - ◆ Source control
 - ◆ Transport reduction across farm
 - ◆ Prevention of contaminant deposition in watercourses

Agricultural Program Activities

- Over 90% participation
- Prioritized management practices
- Conservation Reserve Enhancement Program (CREP)
- Small farm program
- Agricultural easements
- Research
- Forestry Program

Looking Ahead

- Move from implementation to evaluation
- Continue to modify and enhance programs
- Improve relationship between City and upstate communities
- Ensure continued compliance with EPA's filtration avoidance determination

Biophysical Setting of the Watersheds

Biophysical Setting of the Watersheds

Land Cover by Watershed

Watershed	Forest	Urban	Agriculture	Barren
Cannonsville	75.3	0.48	23.9	0.28
Schoharie	89.2	0.24	10.3	0.28
Pepacton	87.0	0.16	12.7	0.12
Ashokan	98.6	0.36	1.0	0.07
Neversink	97.8	0.07	2.1	0.11
Rondout	95.9	0.12	4.0	0.00

Riparian Land Use/Cover

- Up to 80 percent of the subwatersheds total agriculture is located within 120 m of streams.
- Riparian forest cover slightly lower than in whole watersheds.
- Percent forest cover did not change between 30 and 120 meter buffer size.

Water Quality Sample Sites

Water Sample Site

Site Selection

- Data (1987-1998)
- No near point source
- Off main stream
- Even distribution
 - ♦ Across area
 - Across LandCover Type

Results of Multiple Regression

		1987		1991		1998	
		В	Partial R ²	В	Partial R ²	В	Partial R ²
Log N	StreamDensity			- 0.921			
	Agriculture			0.046	59.3	0.039	64.9
	Developed			0.312	6.2	0.256	4.0
	Ag. on Erodible Soil			-0.182	4.3		
	Barren					1.018	3.0
Model R2	2				79.4		79.1
Log P	StreamDensity			- 0.574	3.0	-0.928	7.0
	Agriculture	0.052	50.5	0.047	69.5	0.032	43.1
	Developed			0.233	4.3	0.362	5.4
	Ag. on Erodible Soil					0.426	7.6
Model R2	2		50.5		76.8		63.2
Log FC	Erodible Soil	0.271	16.6	0.206	8.5	0.132	3.3
	Developed	0.409	15.9	0.428	10.5	0.389	12.2
	Agriculture	0.043	31.0	0.048	48.4	0.046	12.7
	Ag. on Slopes >15%			1.099	5.1	1.494	46.1
Model R2	2		63.5		72.4		74.3

Results of Regression for Total Nitrogen

More Landscape Analysis

Source: **Determining Landscape Metrics Effective Area of Influence on Water Quality** M.H. Mehaffey, M.S. Nash, T.G. Wade, and D.W. Ebert. Paper submitted to Landscape Ecology

More Landscape Analysis

More Landscape Analysis

Land Cover Change (1975-1998)

Watershed Cannonsville Schoharie Pepacton Ashokan

Neversink Rondout

Blue = No Change

Orange = Loss

Conclusion of Landscape Analysis

- Landuse gradient from NW to SE.
- Majority of agricultural land use located within 120m of streams.
- Land cover change has been minimal, greatest amount in Cannonsville.
- Vegetation shifts have been between forest and agriculture.
- 3/4 variability in surface water quality parameters explained by landscape metrics.
- Decreasing contribution of agriculture to surface water nutrient concentrations over time.

Conclusion of Landscape Analysis as it Relates to Watershed Protection Program

- Allows watershed managers to see quantitatively what they already suspected intuitively.
- Provides another tool for watershed managers to effectively assess risks in the watershed.
- Supports the belief that appropriate watershed protection programs are being implemented by NYC.